Molecularly imprinted polymer hydrogels displaying isomerically resolved glucose binding.

نویسندگان

  • W J Wizeman
  • P Kofinas
چکیده

Non-covalent molecular imprinting of poly(allylamine hydrochloride) (PAA HCl) with glucose phosphate mono-sodium salt produced molecularly imprinted polymer (MIP) hydrogels capable of quantitative, isomerically specific binding of glucose. By ionic association of a template molecule, glucose phosphate mono-sodium salt, to the polymer prior to covalent crosslinking, MIP hydrogels were created with an affinity for binding glucose. In this study we have synthesized MIPs using epichlorohydrin, ethylene glucol diglycidyl ether, and glycerol diglycidyl ether as crosslinkers in order to evaluate their effectiveness with respect to molecular imprinting for glucose. MIP hydrogels were also synthesized with the different crosslinkers and varying amounts of the template molecule in an attempt to elucidate the impact of imprint quantities on the effectiveness of the imprinting technique. Batch equilibration studies, using each of the MIPs and similar non-molecularly imprinted polymers were performed to determine their binding capacities with respect to glucose and fructose. The binding capacity data are discussed and employed in the evaluation of the specificity imparted by the imprinting procedure. MIP hydrogels with binding capacities in excess of 0.5 g of glucose per gram of dried gel were synthesized. Isomeric specificity in hydrogels imprinted for glucose was demonstrated by higher binding capacities of glucose than those of fructose in the same polymers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biomimetic glucose recognition using molecularly imprinted polymer hydrogels.

Non-covalent molecular imprinting of poly(allylamine hydrochloride) (PAA.HCl) with D-glucose 6-phosphate monobarium salt (GPS-Ba) produced molecularly imprinted polymer hydrogels (MIP) having an affinity to glucose over fructose. The hydrogels were formed by ionic association of the template molecule, GPS-Ba, to the polymer, prior to covalent crosslinking using epichlorohydrin (EPI). The templa...

متن کامل

Molecularly imprinted polymers for tobacco mosaic virus recognition.

Molecular imprinted Polymers (MIP) targeted for Tobacco mosaic virus (TMV) have been synthesized. Batch equilibrium studies using imprinted and non-imprinted polymer hydrogels in TMV and TNV solutions were conducted to determine virus-binding capacities. TMV-imprinted hydrogels showed increased binding to TMV (8.8 mg TMV/gpolymer) compared to non-imprinted hydrogels (4.2 mg TMV/gpolymer). Furth...

متن کامل

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

Imprinted Polymer Hydrogels for the Separation of Viruses

The goal of this research is to elucidate the mechanism of virus recognition in molecularly imprinted polymers (MIPs) using already utilized techniques. Our approach employs a more flexible non-covalent imprinting method which starts from a readily available polymer and utilizes an aqueous environment for both MIP synthesis and testing. Virus MIPs against tobacco mosaic virus (TMV) were synthes...

متن کامل

Molecularly Imprinted Polymers for the Selective Recognition of Proteins

Title of dissertation: MOLECULARLY IMPRINTED POLYMERS FOR THE SELECTIVE RECOGNITION OF PROTEINS Daniel S. Janiak, Doctor of Philosophy, 2009 Dissertation directed by: Professor Peter Kofinas Fischell Department of Bioengineering Molecular imprinting is a technique used to synthesize polymers that display selective recognition for a given template molecule of interest. In this study, the role of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biomaterials

دوره 22 12  شماره 

صفحات  -

تاریخ انتشار 2001